Воркшоп по математическому моделированию и дифференциальным уравнениям, посвященный юбилею Заслуженного деятеля науки РФ, д.ф.-м.н., проф. Ватульяна А.О.

Нестеров С.А.

Южный математический институт – филиал ВНЦ РАН

Об обратных задачах термомеханики

Владикавказ

22-24 ноября 2023

Актуальность

Широкое внедрение в области техники с высокотемпературным окружением элементов конструкций, изготовленных из функциональноградиентных материалов, которые моделируются неоднородными структурами, ставит перед исследованиями задачи идентификации термомеханических характеристик в виде функций. Такие задачи относятся к классу коэффициентных обратных задач термомеханики.

Исследованию коэффициентных обратных задач механики и теплопроводности посвящены работы

Алексеева А.С., Алифанова О.М., Артюхина Е.А., Румянцева С.В., Аниконова А.Ю., Апбасова С.О., Бакушинского А.Б., Благовещенского А.С., Бухгейма А.Л., Ватульяна А.О., Гасанова А., Глушковых Е.В. и Н.В., Денисова А.М., Кабанихина С.И., Лаврентьева М.М., Ломазова В.А., Ляпина А.А., Морозова В.А., Ненарокомова А.В., Романова В.Г., Сковороды А.Р., Сатыбаева А. Дж., Тананы В.П., Яхно В.Г., Bui H.D., Chang J-D., Chavent G., Cheng T.C., Chen G., Constantinescu A., Jadamba B., Hao D., Klibanov M.V., Kravaris C., Lee C.R., Lukasievicz S.A., Xu M.H., Cao K., Lesnic D., Chen J., Gockenbach M.S. и др.

Основные методы решения КОЗ

- Метод сведения обратных задач к экстремальным задачам и применение градиентных методов минимизации функционала невязки или генетических алгоритмов;
- 2) Метод обращения разностных схем;
- 3) Метод операторов Вольтерра.

Обратные задачи термоупругости

1. Вестяк В. А., Земсков А. В., Эрихман Н. Н. Численно-аналитическое решение обратной коэффициентной задачи термоупругости для пластины // Вестник МАИ. 2009. Т. 16, №6. С. 244-249.

2. Ломазов В. А. Задачи диагностики неоднородных термоупругих сред. Орел: Изд-во ОрелГТУ, 2002. 168 с.

3. Lukasievicz S. A., Babaei R., Qian R. E. Detection of material properties in a layered body by means of thermal effects // J. Thermal Stresses. 2003. V. 26, №1. P. 13-23.

Цель данного исследования

Разработка простых и универсальных подходов для идентификации распределенных неоднородностей в стержневых, плоских и цилиндрических структурах.

Нелинейная коэффициентная обратная задача термомеханики решается путем построения итерационного процесса, на каждом этапе которого решается линейное операторное уравнение 1-го рода, полученное на основе слабой постановки и метода линеаризации.

Некоторые работы, в которых представлены основные результаты исследования

1. Ватульян А.О., Нестеров С.А. Коэффициентные обратные задачи термомеханики. 2-е изд., исправ. и доп. Ростов-на-Дону – Таганрог: Издательство Южного федерального университета, 2022. 178 с.

2. Nedin R., Nesterov S., Vatulyan A. On an inverse problem for inhomogeneous thermoelastic rod // International Journal of Solids and Structures. 2014. Vol. 51, No. 3-4. P. 767-773.

3. Ватульян А.О., Нестеров С.А. К определению неоднородных термомеханических характеристик трубы // Инженерно-физический журнал. 2015. Т. 88, № 4. С. 951-959.

4. Vatulyan A., Nesterov S., Nedin R. Some features of solving an inverse problem on identification of material properties of functionally graded pyroelectrics // International Journal of Heat and Mass Transfer. 2019. Vol. 128. P. 1157-1167.

Термомеханические характеристики

- *k*_{*ij*} компоненты тензора теплопроводности
- с_ε удельная теплоемкость
- γ_{*ij*} компоненты тензора температурных напряжений
- *c*_{*ijkl} компоненты тензора упругих модулей*</sub>
 - ρ плотность

Физические поля

- θ температура
- и, компоненты вектора перемещений
- *σ_{ij}* компоненты тензора напряжений

Нагрузки

- *p_i* компоненты вектора механической нагрузки
- *q* плотность теплового потока

Постановка коэффициентной обратной задачи термоупругости

$$\left(c_{ijkl}u_{k,l}-\gamma_{ij}\theta\right)_{,j}=\rho\ddot{u}_{i},$$
(1)

$$(k_{ij}\theta_{,j})_{,i} - c_{\varepsilon}\dot{\theta} - T_{0}\gamma_{ij}\dot{u}_{i,j} = 0,$$
(2)

$$\theta(M,0) = u_i(M,0) = \frac{\partial u_i}{\partial t}(M,0) = 0.$$
(3)

Тепловое нагружение

$$u_i \mid_{S_u} = 0, \quad \theta \mid_{S_T} = 0, \quad -k_{ij} \theta_{,i} n_j \mid_{S_q} = q, \quad \sigma_{ij} n_j \mid_{S_q} = 0$$
(4)

Механическое нагружение

$$u_{i} |_{S_{u}} = 0, \quad \theta |_{S_{T}} = 0, \quad \theta_{,i} n_{j} |_{S_{q}} = 0, \quad \sigma_{ij} n_{j} |_{S_{\sigma}} = p_{i}$$

$$dononhumenьhas uhpopmauus$$

$$\theta |_{S_{q}} = f(x,t) \quad t \in [T_{1}, T_{2}]$$

$$u_{i} |_{S_{\sigma}} = g_{i}(x,t) \quad i = 1, 2, 3 \quad t \in [T_{3}, T_{4}]$$
(5)
(6)
(7)

Постановка КОЗ термоупругости состоит в нахождении термомеханических характеристик (коэффициентов дифференциальных операторов термоупругости) из (1)-(4) или (5) по дополнительной информации (6) или (7).

Операторные уравнения, связывающие искомые термомеханические характеристики с трансформантами перемещений и температуры на части границы тела

На основе использования слабой постановки и и метода линеаризации

При тепловом нагружении

$$\int_{V} \delta k_{ij}^{(n-1)} \tilde{\theta}_{,i}^{(n-1)} \tilde{\theta}_{,j}^{(n-1)} dV + p \int_{V} \delta c_{\varepsilon}^{(n-1)} (\tilde{\theta}^{(n-1)})^{2} dV + + p T_{0} \int_{V} \delta \gamma_{ij}^{(n-1)} \tilde{u}_{i,j}^{(n-1)} \tilde{\theta}^{(n-1)} dV = \int_{S_{q}} \tilde{q} (\tilde{f} - \tilde{\theta}^{(n-1)}) dS$$

$$IDPU MEXAHUYECKOM HAZPYXEHUU$$

$$\int_{V} \delta c_{ijkl}^{(n-1)} \tilde{u}_{i,j}^{(n-1)} \tilde{u}_{k,l}^{(n-1)} dV + p^{2} \int_{V} \delta \rho^{(n-1)} (\tilde{u}_{i}^{(n-1)})^{2} dV + + \int_{V} \delta \gamma^{(n-1)} \tilde{u}_{i,j}^{(n-1)} \tilde{\theta}^{(n-1)} dV = -\int_{S_{\sigma}} \tilde{p}_{i} (\tilde{g}_{i} - \tilde{u}_{i}^{(n-1)}) dS$$
(9)

В случае восстановления одной характеристики при известных остальных полагаем в уравнениях (9), (10) все поправки кроме той, которую определяем, равными нулю.

Итерационная схема решения обратной задачи

- 1) Поиск начального приближения коэффициентов в классе линейных функций на основе минимизации функционала невязки.
- 3) Построение нового приближения $\bar{a}^{(n)}(z) = \bar{a}^{(n-1)}(z) + \delta \bar{a}^{(n-1)}(z)$.

Выход из итерационного процесса осуществлялся:

1) по предельному количеству итераций, равному 20;

2) по достижению функционалом невязки порогового значения, равного 10^{-6} .

В случае теплового нагружения функционал невязки

$$J_1 = \int_a^b (f(\tau_1) - W^{(n-1)}(1,\tau_1))^2 d\tau_1.$$
 (10)

В случае механического нагружения функционал невязки

$$J_{2} = \int_{c}^{d} (g(\tau_{2}) - U^{(n-1)}(1,\tau_{2}))^{2} d\tau_{2}.$$
 (11)

1. Задача для термоупругого стержня

$$\frac{\partial \sigma_x}{\partial x} = \rho(x) \frac{\partial^2 u}{\partial t^2},$$
(12)

$$\sigma_x = E(x)\frac{\partial u}{\partial x} - \gamma(x)\theta,$$
(13)

$$\frac{\partial}{\partial x}(k(x)\frac{\partial\theta}{\partial x}) = c_{\varepsilon}(x)\frac{\partial\theta}{\partial t} + T_{0}\gamma(x)\frac{\partial^{2}u}{\partial x\partial t},$$
(14)

$$\theta(x,0) = u(x,0) = \frac{\partial u}{\partial t}(x,0) = 0$$
(15)

Граничные условия при тепловом воздействии

$$u(0,t) = \theta(0,t) = 0, \quad -k(l)\frac{\partial\theta}{\partial x}(l) = q_0\varphi(t), \qquad \sigma_x(l,t) = 0.$$
(16)

Граничные условия при механическом воздействии

$$u(0,t) = \theta(0,t) = 0, \qquad \frac{\partial \theta}{\partial x}(l,t) = 0, \qquad \sigma_x(l,t) = p_0 \phi(t).$$
(17)

2. Задача для термоупругой трубы

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\varphi\varphi}}{r} = \rho \frac{\partial^2 u}{\partial t^2},$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(k(r)r \frac{\partial \theta}{\partial r} \right) = c_{\varepsilon}(r) \frac{\partial \theta}{\partial t} + T_0 \gamma(r) \left(\frac{\partial^2 u}{\partial r \partial t} + \frac{1}{r} \frac{\partial u}{\partial r} \right),$$
(18)

$$\theta(r,0) = u(r,0) = \frac{\partial u}{\partial t}(r,0) = 0$$
(20)

Граничные условия при тепловом воздействии

$$\theta(r_1,t) = 0, \quad \sigma_{rr}(r_1,t) = 0, \quad -k(r_2) \frac{\partial \theta}{\partial r}(r_2,t) = q_0 \varphi(t), \quad \sigma_{rr}(r_2,t) = 0$$
 (21)
Граничные условия при механическом воздействии

 $\Theta(r_1,t) = 0, \quad \sigma_{rr}(r_1,t) = 0, \quad \frac{\partial \Theta}{\partial r}(r_2,t) = 0, \quad \sigma_{rr}(r_2,t) = p_0 \phi(t)$ (22)

Компоненты тензора напряжений

$$\sigma_{rr} = (\lambda + 2\mu)\frac{\partial u}{\partial r} + \lambda \frac{u}{r} - \gamma \theta, \qquad \sigma_{\varphi\varphi} = \lambda \frac{\partial u}{\partial r} + (\lambda + 2\mu)\frac{u}{r} - \gamma \theta$$

3. Задача для конечного термоупругого цилиндра

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{zr}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\varphi\varphi}}{r} = \rho \frac{\partial^2 u_r}{\partial t^2},$$

$$\frac{\partial \sigma_{zr}}{\partial r} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{zr}}{r} = \rho \frac{\partial^2 u_z}{\partial t^2},$$
(23)

$$\frac{1}{r}\frac{\partial}{\partial r}(k(r)r\frac{\partial\theta}{\partial r}) + k(r)\frac{\partial^2\theta}{\partial z^2} = c(r)\frac{\partial\theta}{\partial t} + T_0\gamma(r)(\frac{\partial^2 u_r}{\partial r\partial t} + \frac{1}{r}\frac{\partial u_r}{\partial t} + \frac{\partial^2 u_z}{\partial z\partial t}),$$
(25)

$$u_{z}(r,\pm h,t) = 0, \quad \frac{\partial \theta}{\partial z}(r,\pm h,t) = 0, \tag{26}$$

$$\sigma_{rr}(r_1, z, t) = \sigma_{rz}(r_1, z, t) = \theta(r_1, z, t) = 0,$$
(27)

$$\theta(r,z,0) = u_r(r,z,0) = \frac{\partial u_r}{\partial t}(r,z,0) = u_z(r,z,0) = \frac{\partial u_z}{\partial t}(r,z,0) = 0$$
(28)

Способы нагружения:

$$-k(r_2)\frac{\partial\theta}{\partial r}(r_2,z,t) = q_0g_1(z)\varphi(t), \qquad \sigma_{rr}(r_2,z,t) = 0, \qquad \sigma_{rz}(r_2,z,t) = 0 \qquad \text{тепловой}$$
(29)

$$\frac{\partial \theta}{\partial r}(r_2, z, t) = 0, \qquad \sigma_{rr}(r_2, z, t) = -p_{rr}g_2(z)\phi(t), \qquad \sigma_{rz}(r_2, z, t) = 0$$
нормальная нагрузка (30)

 $\frac{\partial \theta}{\partial r}(r_2, z, t) = 0, \quad \sigma_{rr}(r_2, z, t) = 0, \quad \sigma_{rz}(r_2, z, t) = -p_{rz}g_3(z)\psi(t)$ касательная нагрузка (31)

4. Задача для термоупругого прямоугольника

$$\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{13}}{\partial x_3} = \rho \frac{\partial^2 u_1}{\partial t^2}, \qquad \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{33}}{\partial x_3} = \rho \frac{\partial^2 u_3}{\partial t^2},$$
(32)

$$k(x_3)\frac{\partial^2\theta}{\partial x_1^2} + \frac{\partial}{\partial x_3}\left(k(x_3)\frac{\partial\theta}{\partial x_3}\right) = c_{\varepsilon}(x_3)\frac{\partial\theta}{\partial t} + T_0\gamma(x_3)\left(\frac{\partial^2 u}{\partial x_1\partial t} + \frac{\partial^2 u}{\partial x_3\partial t}\right),$$
(33)

$$u_1(\pm L, x_3, t) = \sigma_{31}(\pm L, x_3, t) = \frac{\partial \theta}{\partial x_1}(\pm L, x_3, t) = 0,$$
(34)

$$u_1(x_1, 0, t) = u_3(x_1, 0, t) = \theta(x_1, 0, t) = 0,$$
(35)

$$u_1(x_1, x_3, 0) = u_3(x_1, x_3, 0) = \theta(x_1, x_3, 0) = \frac{\partial u_1}{\partial t}(x_1, x_3, 0) = \frac{\partial u_3}{\partial t}(x_1, x_3, 0) = 0$$
(36)

Граничные условия при тепловом воздействии

$$-k(h)\frac{\partial\theta}{\partial x_{3}}(x_{1},h,t) = q_{0}R_{2}(x_{1})\varphi(t), \quad \sigma_{13}(x_{1},h,t) = \sigma_{33}(x_{1},h,t) = 0,$$
(37)

Граничные условия при нормальной механической нагрузке $\sigma_{33}(x_1, h, t) = -p_{33}R_1(x_1)\phi(t), \quad \sigma_{13}(x_1, h, t) = 0, \quad \frac{\partial\theta}{\partial x_3}(x_1, h, t) = 0$ (38)

$$\sigma_{11} = \left(\lambda + 2\mu\right) \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_3}{\partial x_3} - \gamma \theta, \quad \sigma_{33} = \lambda \frac{\partial u_1}{\partial x_1} + \left(\lambda + 2\mu\right) \frac{\partial u_3}{\partial x_3} - \gamma \theta, \quad \sigma_{13} = \sigma_{31} = \mu \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1}\right)$$

5. Задача для неоднородного по толщине слоя

$$(\lambda + 2\mu)u_{1,11} + (\lambda u_{3,3})_{,1} + ((\mu(u_{1,3} + u_{3,1}))_{,3} - (\gamma\theta)_{,1} = \rho \ddot{u}_{1},$$
(39)

$$((\lambda + 2\mu)u_{3,3})_{,3} + (\lambda u_{1,1})_{,3} + ((\mu(u_{1,3} + u_{3,1}))_{,1} - (\gamma\theta)_{,3} = \rho \ddot{u}_{3},$$
(40)

$$k\theta_{,11} + (k\theta_{,3})_{,3} = c\dot{\theta} + T_0\gamma(\dot{u}_{1,1} + \dot{u}_{3,3}),$$
(41)

$$u_1(x_1, 0, t) = u_3(x_1, 0, t) = \theta(x_1, 0, t) = 0,$$
(42)

$$\sigma_{13}(x_1, h, t) = F_1(x_1, t), \quad \sigma_{33}(x_1, h, t) = F_2(x_1, t), \tag{43}$$

$$q(x_1, h, t) = F_3(x_1, t),$$
 (44)

$$u_1(x_1, x_3, 0) = u_3(x_1, x_3, 0) = \theta(x_1, x_3, 0) = \dot{u}_1(x_1, x_3, 0) = \dot{u}_3(x_1, x_3, 0) = 0$$
(45)

Обратная задача сводится к определению неоднородных по толщине слоя характеристик по дополнительной информации о полях температуры и смещений, измеренных на верхней границе слоя:

$$\theta(x_1, h, t) \Big| = f(x_1, t), \quad t \in [T_1, T_2]$$

$$u_i(x_1, h, t) \Big| = g_i(x_1, t), \quad t \in [T_3, T_4]$$
(46)
(47)

Упрощение задачи для слоя

С помощью процедуры осреднения двумерная задача для слоя распадается на две более простые одномерные задачи усредненных по продольной координате компонент полей.

$$\frac{\partial}{\partial z} \left(\overline{\mu} \frac{\partial \overline{U}_{1}}{\partial z} \right) = \overline{\rho} \frac{\partial^{2} \overline{U}_{1}}{\partial \tau_{2}^{2}}$$

$$\overline{U}_{1}(0, \tau_{2}) = 0$$

$$\overline{\mu} \frac{\partial \overline{U}_{1}}{\partial z} (1, \tau_{2}) = \overline{F}_{2}(\tau_{2})$$

$$\overline{U}_{1}(z, 0) = 0$$

$$\overline{U}_{1}(1, \tau_{2}) = g_{1}(\tau_{2}) \quad \tau_{2} \in [a_{1}, b_{1}]$$

$$\begin{aligned} \frac{\partial}{\partial z} \left(\overline{s}(z) \frac{\partial \overline{U}_{3}}{\partial z} \right) &- \frac{\partial}{\partial z} (\overline{\gamma}(z) \overline{W}) = \varepsilon_{0}^{2} \overline{\rho}(z) \frac{\partial^{2} \overline{U}_{3}}{\partial \tau_{1}^{2}} \\ \frac{\partial}{\partial z} \left(\overline{k}(z) \frac{\partial \overline{W}}{\partial z} \right) &= \overline{c}(z) \frac{\partial \overline{W}}{\partial \tau_{1}} + \delta_{0} \overline{\gamma}(z) \frac{\partial^{2} \overline{U}_{3}}{\partial z \partial \tau_{1}} \\ \overline{U}_{3}(0, \tau_{1}) &= \overline{W}(0, \tau_{1}) = 0 \\ \overline{s}(z) \frac{\partial \overline{U}_{3}}{\partial z}(0, \tau_{1}) - \overline{\gamma} \overline{W}(0, \tau_{1}) = 0 \\ &- \overline{k}(z) \frac{\partial \overline{W}}{\partial z}(0, \tau_{1}) = \overline{F}_{3}(\tau_{1}) \\ \overline{W}(z, 0) &= \overline{U}_{3}(z, 0) = \frac{\partial \overline{U}_{3}}{\partial \tau_{1}}(z, 0) = 0 \\ \overline{W}(1, \tau_{1}) &= f(\tau_{1}) \quad \tau_{1} \in [a_{3}, b_{3}] \end{aligned}$$

Схема решения связанных задач термомеханики

- 1. Обезразмеривание задач с введением параметра связанности $\delta_0 = \frac{\gamma_0^2 T_0}{c_0 S_0}$.
- 2. Применение к обезразмеренным задачам преобразование Лапласа по времени.
- 3. Получение канонической системы ОДУ 1-го порядка в трансформантах Лапласа с переменными коэффициентами.
- В случае задачи для термоупругого стержня сведение к системе интегральных уравнений Фредгольма 2-го порядка и решение ее методом коллокаций.
- 5. В случае задачи для термоупругой трубы применение метода пристрелки.
- В случае задач для прямоугольника и конечного цилиндра совместное применение метода разделения переменных и метода пристрелки для гармоник.
- Решение в оригиналах путем обращения трансформант одним из 2-х методов: 1) на основе теории вычетов (для термоупругого стержня); 2) методом разложения оригинала по смещенным многочленам Лежандра (для других тел).

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} Onepatophile ypabhehug \\ \hline \partial ns \ cmep \varkappa hs \\ \partial ns \ cmep \varkappa hs \\ \partial ns \ cmep \varkappa hs \\ \hline \partial ns \ cmep \varkappa h$$

для конечного цилиндра

$$\tilde{f}(\xi_2, p) = \sum_{N_3=0}^{\infty} \tilde{f}_{N_3}(p) \cos(\nu_{N_3}\xi_2) \qquad \qquad \tilde{g}(\xi_2, p) = \sum_{N=0}^{\infty} \tilde{g}_{N_3}(p) \cos(\nu_{N_3}\xi_2)$$
(54)

Операторные уравнения сформулированы для гармоник

$$\prod_{\xi_{0}} N = 0$$

$$\int_{\xi_{0}}^{1} \left(\delta \overline{k}^{(n-1)} \left(\tilde{d}_{0}^{\prime(n-1)} \right)^{2} + p \delta \overline{c}^{(n-1)} \left(\tilde{d}_{0}^{(n-1)} \right)^{2} + p \delta_{0} \delta \overline{\gamma}^{(n-1)} \left(\tilde{a}_{0}^{\prime(n-1)} + \frac{\tilde{a}_{0}^{(n-1)}}{\xi_{1}} \right) \tilde{d}_{0}^{(n-1)} \right) \xi_{1} d\xi_{1} = g_{10} \beta_{1} \tilde{\varphi}(p) \left(\tilde{f}_{0}(p) - \tilde{d}_{0}^{(n-1)}(1, p) \right),$$

$$\int_{\xi_{0}}^{1} \left(\delta \overline{\lambda}^{(n-1)} \left(\tilde{a}_{0}^{\prime(n-1)} + \frac{\tilde{a}_{0}^{(n-1)}}{\xi_{1}} \right)^{2} + \delta \overline{\mu}^{(n-1)} \left(\left(\tilde{a}_{0}^{\prime(n-1)} \right)^{2} + \left(\frac{\tilde{a}_{0}^{(n-1)}}{\xi_{1}} \right)^{2} \right) + p^{2} \delta \overline{\rho}^{(n-1)} \left(\tilde{a}_{0}^{(n-1)} \right)^{2} \right) -$$

$$(55)$$

$$-\delta_0 \delta \overline{\gamma}^{(n-1)} \left(\tilde{a}_0^{(n-1)} + \frac{a_0^{(n-1)}}{\xi_1} \right) \tilde{d}_0^{(n-1)} \xi_1 d\xi_1 = -g_{20} \beta_2 \tilde{\phi}(p) \left(\tilde{g}_0(p) - \tilde{a}_0^{(n-1)}(1,p) \right)$$
(56)

При
$$N = 1, 2, ...$$

$$\int_{0}^{1} \left(\delta \overline{k}^{(n-1)} \left(\left(\tilde{d}_{N}^{\prime(n-1)} \right)^{2} + v_{N}^{2} \left(\tilde{d}_{N}^{(n-1)} \right)^{2} \right) + p \delta \overline{c}^{(n-1)} \left(\tilde{d}_{N}^{(n-1)} \right)^{2} + p \delta \overline{c}^{(n-1)} \left(\tilde{d}_{N}^{\prime(n-1)} \right)^{2} + \frac{\tilde{a}_{n}^{(n-1)}}{2} + v_{N} \tilde{b}_{n}^{(n-1)} \right) \tilde{d}_{n}^{(n-1)} \tilde{d}_{N}^{(n-1)} \tilde{d}_{N}^{(n-1)} \left(\tilde{f}_{N}(p) - \tilde{d}_{N}^{\prime(n-1)}(1,p) \right).$$
(57)

$$+2p\delta_{0}\delta\gamma''' \left(a_{N}^{(n-1)} + \frac{\bar{\xi}_{1}}{\xi_{1}} + v_{N}\delta_{N}^{(n-1)}\right)a_{N}^{(n-1)}\zeta_{1}a\zeta_{1} = g_{1N_{3}}\beta_{1}\varphi(p)\left(f_{N_{3}}(p) - a_{N_{3}}^{(n)}(1,p)\right),$$

$$\int_{0}^{1} \left(\delta\overline{\lambda}^{(n-1)}\left(\tilde{a}_{N}^{(n-1)} + \frac{\tilde{a}_{N}^{(n-1)}}{\xi_{1}} + v_{N}\tilde{b}_{N}^{(n-1)}\right)^{2} + 2y_{0}\delta\overline{\mu}^{(n-1)}\left(\left(\tilde{a}_{N}^{(n-1)}\right)^{2} + \left(\frac{\tilde{a}_{N}^{(n-1)}}{\xi_{1}}\right)^{2} + \left(v_{N}\tilde{b}_{N}^{(n-1)}\right)^{2} + \frac{1}{2}\left(\tilde{b}_{N}^{(n-1)} - v_{N}\tilde{a}_{N}^{(n-1)}\right)^{2}\right) +$$

$$(58)$$

$$+p^{2}\delta\overline{\rho}^{(n-1)}\left(\left(\tilde{a}_{N}^{(n-1)}\right)^{2}+\left(b_{N}^{(n-1)}\right)^{2}\right)-2\delta_{0}\delta\overline{\gamma}^{(n-1)}\left(\tilde{a}_{N}^{\prime(n-1)}+\frac{\tilde{a}_{N}^{(n-1)}}{\xi_{1}}+\nu_{N}\tilde{b}_{N}^{(n-1)}\right)\tilde{d}_{N}^{(n-1)}\right)\xi_{1}d\xi_{1}=-g_{2N_{3}}\beta_{2}\tilde{\phi}(p)\left(\tilde{g}_{N_{3}}(p)-\tilde{a}_{N_{3}}^{(n-1)}(1,p)\right)\xi_{1}d\xi_{1}$$

Влияние модуля Юнга на смещение торца стержня

Различные законы неоднородности существенно влияют на граничные физические поля.

Исследование влияния различных законов неоднородности на физические поля

Влияние коэффициента теплопроводности на температуру внешней поверхности трубы

 $\varphi(\tau_1) = H(\tau_1)$ 0.15 $\overline{k}(\xi) = 1$ - сплошная линия $\overline{k}(\xi) = 2.7 - ln(0.5 + 25(\xi - \xi_0))$ - точки 0.1 $\overline{k}(\xi) = 1.5 + \cos(10(\xi - \xi_0))$ - пунктир 0.05 Рис. 2 0.005 0.01 0.015 0.02 0.025

Реконструкция одной характеристики при известных остальных

Операторные уравнения в оригиналах для стержня

Операторные уравнения на конечном временном отрезке (в оригиналах) получаются путем обращения операторных уравнений в трансформантах на основе теорем операционного исчисления.

Для нахождения поправок коэффициента теплопроводности

$$\int_{0}^{1} \delta \bar{k}^{(n-1)} R_{1}(z,\tau_{1}) dz = f(\tau_{1}) - W^{(n-1)}(1,\tau_{1}),$$
(59)
Для нахождения поправок удельной теплоемкости

$$\int_{0}^{1} \delta \bar{c}^{(n-1)} R_{2}(z,\tau_{1}) dz = f(\tau_{1}) - W^{(n-1)}(1,\tau_{1}),$$
(60)

$$R_{1}(z,\tau_{1}) = \frac{1}{\beta_{1}} \int_{0}^{\tau_{1}} \frac{\partial^{2} W^{(n-1)}(z,\tau)}{\partial z \partial \tau} \frac{\partial W^{(n-1)}(z,\tau_{1}-\tau)}{\partial z} d\tau,$$

$$R_{2}(z,\tau_{1}) = \frac{1}{\beta_{1}} \int_{0}^{\tau_{1}} \frac{\partial W^{(n-1)}(z,\tau)}{\partial \tau} \frac{\partial W^{(n-1)}(z,\tau_{1}-\tau)}{\partial \tau} d\tau$$

В первом случае погрешность реконструкции на 8 итерации не превышает 2%, а во втором – 6%. Таким образом, наиболее информативным является первый интервал, при котором скорость изменения дополнительной информации максимальна и он находится в наиболее близкой к началу отчета времени зоне.

Сходимость итерационного процесса реконструкции функции $\bar{k}(z) = 1.5 - \cos(\pi z - 1)$

таблица.		
Номер итерации	Невязка	Относительная погрешность, %
1	0.00296596	19.8
2	0.00024487	15.4
3	0.00001750	10.7
4	00.00000288	7.2
5	0.00000094	6.0
6	0.00000080	5.9

Итерационный процесс реконструкции быстро сходится, т.к. функционал невязки на пятой итерации достигает порогового значения, а дальнейшее увеличение числа итераций практически не увеличивает точность реконструкции.

Результаты идентификации коэффициентов Ламе трубы при механическом нагружении

Влияние параметра термомеханической связанности на результаты реконструкции коэффициента температурных напряжений трубы

 $\overline{\gamma}(\xi) = 1 + \sin\left(10\left(\xi - \xi_0\right)\right)$

Результаты идентификация свойств слоя

Решение задачи 1. Восстановление модуля сдвига

$$\overline{\mu}(z) = 1 + e^{-1000(z-0.45)^4}$$

Решение задачи 2. Реконструкция коэффициента теплопроводности кожи

Рис. 9

Рис. 10

Влияние зашумления дополнительной информации на результаты реконструкции функции

$$f_{\beta}(\tau_1) = f(\tau_1) \left(1 + \beta \gamma_0 \right)$$
(61)

- eta амплитуда зашумления
- *γ*₀ случайная величина с равномерным законом распределения на отрезке [−1,1]

Точки – отсутствие шума

Штрихпунктир – 1%-й шум

Рис. 11

Идентификация 2-х теплофизических характеристик

Рассматривается два типа тепловой нагрузки на торце стержня z=11) тепловой поток; 2) температура, меняющаяся по закону $\tau_1 e^{-\tau_1}$

Дополнительная информация

$$W_{I}(1,\tau_{1}) = f_{I}(\tau_{1}) \qquad \tau_{1} \in [a_{1},b_{1}]$$
(62)

минимизации функционала невязки

$$J = \int_{a_1}^{b_1} \left(f_I(\tau_1) - W_I(1,\tau_1) \right)^2 d\tau_1 + \int_{a_2}^{b_2} \left(f_{II}(\tau_1) - Q_{II}(1,\tau_1) \right)^2 d\tau_1$$
(64)

Система операторных уравнений

$$\int_{0}^{1} \left(\delta \overline{k}^{(n-1)} R_{11}(z,\tau_{1}) + \delta \overline{c}^{(n-1)} R_{12}(z,\tau_{1}) \right) dz = f_{I}(\tau_{1}) - W_{I}^{(n-1)}(1,\tau_{1})$$

$$\int_{0}^{1} \left(\delta \overline{k}^{(n-1)} R_{21}(z,\tau_{1}) + \delta \overline{c}^{(n-1)} R_{22}(z,\tau_{1}) \right) dz = f_{II}(\tau_{1}) - Q_{II}^{(n-1)}(1,\tau_{1})$$
(65)
(66)

Результаты одновременной реконструкции коэффициента теплопроводности и удельной теплоемкости стержня

$$\overline{k}(z) = 1 - 0.5(z - 1)^2$$

 $\overline{c}(z) = 0.5(1+z^2)$

Рис. 12

Рис. 13

Поэтапное восстановления двух характеристик конечного цилиндра $\bar{c}(\xi_1)$ и $\bar{k}(\xi_1)$

В случае конечного цилиндра проведенные расчеты показали, что значение норм ядер при поправке коэффициента теплопроводности значительно больше, чем удельной теплоемкости, поэтому восстановить их из решения системы ИУФ1-го рода невозможно.

Принята поэтапная реконструкция функций $\overline{c}(\xi_1)$ и $\overline{k}(\xi_1)$

1) Нахождение поправок $\delta \overline{c}^{(n-1)}$ при $\delta \overline{k}^{(n-1)} = 0$

1

$$\int_{\xi_0}^{\cdot} \delta \overline{c}^{(n-1)} P_1(\xi_1, \tau_1) \xi_1 d\xi_1 = f_0(\tau_1) - d_0^{(n-1)}(1, \tau_1) \qquad \tau_1 \in [a, b]$$
(67)

(68)

2) Нахождение поправок $\delta \overline{k}^{(n-1)}$ при $\delta \overline{c}^{(n-1)} = 0$ $\int_{\xi_0}^1 \delta \overline{k}^{(n-1)} P_2(\xi_1, \tau_1) \xi_1 d\xi_1 = f_0(\tau_1) - d_0^{(n-1)}(1, \tau_1) \qquad \tau_1 \in [a, b]$ $P_1(\xi_1, \tau_1) = \frac{1}{g_{10}\beta_1} \int_0^{\tau_1} \frac{\partial d_0^{(n-1)}(\xi_1, \tau_1)}{\partial \tau} \frac{\partial d_0^{(n-1)}(\xi_1, \tau_1 - \tau)}{\partial \tau} d\tau$ $P_2(\xi_1, \tau_1) = \frac{1}{g_{10}\beta_1} \int_0^{\tau_1} \frac{\partial d_0^{(n-1)}(\xi_1, \tau)}{\partial \xi_1} \frac{\partial^2 d_0^{(n-1)}(\xi_1, \tau_1 - \tau)}{\partial \xi_1 \partial \tau} d\tau$

Результаты поэтапной реконструкции двух характеристик конечного цилиндра

Результаты поэтапной реконструкции двух характеристик прямоугольника

2-й этап

 y_3

 $\overline{k}(y_3) = e^{-1.38y_3}$ $\overline{\gamma}(y_3) = 0.8 + \sin(1.8y_3)$ \overline{k} 0.8 1.6 1.4 1.2 0.6 0.8 0.40.6 0.4 0.2 0.2 0.4 0.6 0.8 y_3 0.2 0.4 0.8 0.6 Рис. 17 Рис. 16

1-й этап

Особенности итерационной идентификации термомеханических характеристик

1. В случае реконструкции одной характеристики монотонные функции восстанавливаются лучше немонотонных: при отсутствии зашумления погрешность реконструкции не превышает 4% для монотонных и 8% для немонотонных функций. При этом итерационный процесс быстро сходится — для выполнения первого условия выхода, как правило, требуется не более 8 итераций.

2. Процедура реконструкции оказалась устойчивой к 1%-му зашумлению входной информации.

3. Максимальная погрешность реконструкция удельной теплоемкости, плотности, коэффициента температурных напряжений возникает на защемленном торце стержня и внутренней поверхности цилиндра, что связано с особенность ядер соответствующих интегральных уравнений.

4. При уменьшении толщины цилиндра и толщины слоистого материала погрешность реконструкции возрастает. В случае слоистого материала максимальная погрешность – в области сопряжения слоев.

5. Успешная реконструкция коэффициента температурных напряжений возможна только при большом параметре термомеханической связанности.

CUACNEO 39 BHNNAHNE!